skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barron, Katrina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 25, 2026
  2. Using the Zhu algebra for a certain category of C-graded vertex algebras V, we prove that if V is finitely Ω-generated and satisfies suitable grading conditions, then V is rational, i.e., it has semi-simple representation theory, with a one-dimensional level zero Zhu algebra. Here, Ω denotes the vectors in V that are annihilated by lowering the real part of the grading. We apply our result to the family of rank one Weyl vertex algebras with conformal element ωμ parameterized by μ∈C and prove that for certain non-integer values of μ, these vertex algebras, which are non-integer graded, are rational, with a one-dimensional level zero Zhu algebra. In addition, we generalize this result to appropriate C-graded Weyl vertex algebras of arbitrary ranks. 
    more » « less